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INTRODUCTION

There has been a recent resurgence of interest in the multi-disciplinary field of
artificial neuratl networks. Artificial neural networks, originally inspired by the
computational capabilities of the human brain, refer to a variety of computing
architectures that consist of massively parallel interconnections of simple processing
elements.

Artificial neural networks (a.k.a. Neural Networks) are implemented utilizing a
variety of technologies, as shown in Fig 1. The most used implementation technique is
via computer simulations, which provide a very flexible framework from which to
evaluate a panicular paradigm, and for comparing with more conventional processing
algorithms.

SPEED (INTERCONNECTS/SEC)

COMPUTER DIRECT HYBRIDS
SIMULATION VLSI/VHSIC

DIGITAL ANALOG OPTICAL
IC's VLSI

FIG 1: IMPLEMENTATIONS




However, computer simulations of neural networks, especially during training, can be
exceptionally slow, even with the use of commercially available neural network
accelerator boards. Also, once a hardware implementation of the neural network has
been established, the comparison between it and the conventional simulation of the
neural network becomes irrelevant.

Digital integrated circuit (IC) implementations offer an improvement in the
processing speed of neural networks, measured in interconnections per second, but
they are generally static architectures encompassing larger packaging requirements
than are useful in realistic applications. Therefore, the artificial neural networks that
have been implemented using digital ICs are usually limited in the number of neurons
and interconnections which can be constructed primarily due to size constraints.
Currently, there exist two promising advanced technologies for implementing neural
networks: Very Large Scale Integration (VLSI) circuits, and optical.

This final technical report describes the utilization of VLSI circuits for implementing
various neural networks, with an emphasis on analog VLS/, as opposed to digital
VLS|, implementations. The recent literature on analog VLS| implementations of
neural networks is scattered throughout a number of conference proceedings and
journals, making it difficult to gain an overview of the different analog VLSI techniques
utilized. This report is aimed at providing such an overview.

Several of the papers referenced have working versions of analog VLSI
implementations, while others have theorized the methodology required for analog
VLS| implementations. Some of the research presented incorporates a hybrid of
analog and digital VLSI techniques for implementation, utilizing the advantages of
each technology. A comparison of the different implementation techniques (e.g.,
CMOS, MOSFET, MNOS, etc.) is provided, as is the type of paradigm implemented
(e.g., backpropagation, Hopfield, bidirectional associative memories, etc.).

BACKGROUND

Computation within the human brain is currently believed to be an electrochemical
process which takes place in an analog fashion . The inputs to the brain are received
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as a continuous (ie, analog) stream of data, such as received by the auditory and
visual systems. This data is then processed by a multitude of massively
interconnected biological neurons. The human cerebral cortex is believed to contain
approximately 100 billion neurons, which are connected by approximately 100,000
billion synapses, providing some 10,000 billion interconnections per second [61].
The computational capability of the human brain does not depend on the ability of just
one neuron, but the collective computation from billions of neurons. This enormous
processing capability has provided the inspiration to a multitude of researchers to
obtain a comparable computing capability, and several researchers are currently
investigating the potential of advanced hardware implementations of artificial neural
networks.

A simplified antificial neuron model is illustrated in Fig 2, which consists of a
processing element (PE) whose output is a function of its input. The input to a

Variable
Weights

Input : PE .

. Output

Fig 2: A Model Neuron

processing element is the weighted sum of eithar outputs from other PEs or the
original inputs to the network. This weighted sum is then presented to the PE, which




incorporates a nonlinear transfer function (e.g., sigmoid) to determine the output,
which is then presented to either other PEs or the network output. Therefore an
implementation of an artificial neural network must be able to compute sums and
products very efficiently.

Although artificial neural networks can be implemented using static weights, the use
of variable weights, as illustrated in Fig 2, appears to be leading the charge in the
research community. The hardware implementation of variable weights permits the
artificial neural network to adapt or ‘learn’ over time. The weights are typically adapted
using an equation of the form:

new_weight = old_weight + error_correction_term

Three different learning schemes, Hebbian, Least Mean Squares (LMS) or Delta Rule,
and Self Organizing, all have this form [6].  As stated in [29] the most important aspect
from a hardware perspective is that most learning techniques require interconnection
weights that are adjustable in small steps. The ability to adjust the weights in small
steps implies that high resolution is required for storing the weights. However, several
researchers have shown that in the evaluation phase (feedforward, no training) most
networks are very tolerant to low precision in the weights [29]. The different learning
schemes can either be accomplished off-chip or on-chip, and this decision has a large
impact on the actual circuit implementation based on existing technologies.

ADVANCED IMPLEMENTATION TECHNOLOGIES

There are two advanced technologies currently being researched for implementing
artificial neural networks: VLSI and Optical. As stated in [61] the “principle advantage
of using optics for the implementation of neural networks is the fact that one can
optically implement a three-dimensional system with relative ease”. An optical
implementation (e.g., holographic) offers an advantage in the interconnections of the
neurons in that it can be done optically, as opposed to the maze of interconnects which
are required in VLS| implementations. For this reason, optics is one of the promising
technologies for implementing neural networks. For more information on optical (as
well as opto-electronic/hybrid) implementations, the reader is referred to the open
literature.




The other promising technology for artificial neural network implementations is VLSI
circuits. VSLI circuits are essentially two-dimensional (ie, planar) devices, which
implies that a limited number of layers are available for the interconnection of
processing elements. (It should be mentioned that, according to [24], major
development in three-dimensional IC connectivity is taking place primarily in Japan.)
There are two approaches to impiementations based on VLSI technology, either
Analog VLSI or Digital VLS.

Digital VLSI is a mature technology from which to draw from for implementing
artificial neural networks. There exists a variety of design tools (e.g., Computer Aided
Design tools) which are amenable to digital VLSI circuit design, which permits circuit
designers to more easily construct complex digital circuits. Also, the artificial neuron
and the synapses can both easily be implemented in digital hardware, since each can
be expressed by simple arithmetic operations. Another advantage of digital
processing is the accuracy at which computations can be performed. The issue of
accuracy also has a direct impact on the resolution of the weights, as digital
implementations can have arbitrarily precise weights, which influences the training of
the artificial neural network, as well as the final output. However, one of the major
disadvantages of digital neural implementations is that too much silicon area is
consumed [67]. Another disadvantage is that digital circuits require relatively high
signal to noise ratios in order to obtain accurate results {61]. For more information on
digital VLSI implementations, the reader is referred to the open literature.

Analog VLS! implementations, on the other hand, utilize much less silicon area.
One of the reasons for this, is that analog computation utilizes properties of the device
physics. For example, summation in an analog circuit can be accomplished by making
use of the principles of Kirchoff's Current Law, which is based on the physical concept
of Conversation of Charge [58]. Kirchhoff's current law states that the sum of the
currents into the node is equal to the sum of the currents out of the node.Conservation
of charge essentially states that electrical charge can be neither created nor
destroyed; therefore a node, by itself, cannot store any charge. Summation,
therefore, is obtained simply by combining the currents from other neurons onto a wire.
A simplified example of an analog implementation of a model neuron [28] is shown in
Fig 3, where the weighted cor.nections from other neurons are summed along the
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input wire of neuron 1. The output of neuron 1 is a voltage, which is then transmitted to
other neurons through the respective connections (weights). The output voltage of

Connections from Connections to
other neurons / other neurons

U /
_ s Sutpu

Neuron 1

Fig 3: A Simpilified
Neuron Implementation

This figure extracted from Graf {29}

neuron 1 is given by the following relationship:

Output_Voltage = f ( Input_Current)

The input current to neuron 1 is equal to the sum of the currents through the
connections from other neurons, where the individual currents are equal to the
voltage from the respective neuron times the conductance of the connection weight.
Therefore, as was previously shown, one of the basic computations to be performed by
an artificial neural network is a sum of products.

For analog computation, the basic signals used are currents and voltages. As
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previously described, the output of neuron 1 is a voltage. This voltage, which is
supplied as the input to the connections which lead from neuron 1 to other neurons, is
the same for all connections leading from neuron 1. For these reasons, analog VLSI is
highly appropriate for the massively parallel implementations of artificial neural
networks. Mead [58] provides an excellent description of how simple analog circuits
can be implemented as building blocks to obtain results which are functionally similar
to processes performed by biological systems.

Other physical properties of devices which can be useful for analog computations
are natural propagation which can be used to provide time delays, and noisy devices
which can be used to perform stochastic processing [61]. Another advantage of
analog computation is the extremely high computational rates which can be achieved
by using the physical properties of simple devices. This results in efficient utilization of
silicon, thereby providing very high densities.

Some of the disadvantages of analog computation stem from the lack of
sophisticated design tools such as the tools available for digital design. Another
disadvantage is the accuracy of the computations, or even the accuracy at which the
individual weights can be stored. The ability to retain high precision weights in an
analog implementation is currently being researched, but recent results have shown
that dynamic resolutions on the order of 11-12 bits are possible [19,80]. However, for
the reasons listed above, there are several researchers who are utilizing a hybrid
analog / digital implementation for artiticial neural networks to take the advantages of
each technology, while reducing the disadvantages associated with each technology.
For further information on hybrid analog/digital implementations, refer to table 1 which
includes references pentaining to hybrid implementations. The remainder of this report
will emphasize analog VLSI implementations of artificial neural networks.

ANALOG VLSI TECHNOLOGIES/IMPLEMENTATIONS

Probably the most compelling reason to use analog VLSI for implementing artificial
neural networks is that inputs obtained from the real world are analog! There currently
exist a number of technologies which can be used to implement an analog (or hybrid
analog / digital) VLSI based artificial neural network. Listed below are the
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technologies which have appeared in the open literature:

- Generic CMOS (capacitors, FETSs, etc.)
(includes subthreshold MOSFET operation)

- Floating Gate Transistors

- Charge-Coupled Devices (CCD)

- EEPROMS

- Metal Nitride Oxide Silicon (MNOS). and

- Pulse Code Modulation (includes Pulse Freq Modulation
and Pulse Width Modulation)

Generic Complementary Metal-Oxide Semiconductcr (CMOS) Technology is the
principle technology used in microelectronics today. Techniques included in this
category include the use of MOS capacitors for storing weights, MOSFETs (field effect
transistors), and the use of subthreshold circuits as described in [58]. CMOS
technology acquired its name from the concept upon which it is based. The
complementary aspect is a resuit of the use of both p-channel and n-channel MOS
transistors. P-channe!l MOS transistors are transistors which utilize positive charges
(holes) as the charge carriers, while n-channel MOS transistors utilize negative
charges (electrons) as the charge carriers. For an excellent description of CMOS VLSI
technology, the reader is referred to [58]. The Generic CMOS category was the most
utilized technology among the papers researched, and included the implementations
for a variety of paradigms with the exception of the Kohonen net. Figs 4 & 5 illustrate
the references which utilize generic CMOS technology for implementing certain
paradigms / biologically inspired functions.

Fig 4 contains a wealth of information. Listed under the heading “PARADIGM" are
the artificial neural network models which have been implemented by the variety of
references included in this paper. Descriptions of the models are widely available in
the open literature. The last two entries GENERAL and UNKNOWN however need
some elaboration. The GENERAL category has been included for those hardware
implementations that have either implemented more than one paradigm, or the
authors have stated that they can implement a variety of different paradigms. The
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UNKNOWN class was added to incorporate those articles which performed a small
portion of an artificial neural network (e.g., only a synapse structure was implemented,
or only general theory was provided as to the methodology in which an architecture
couid be implemented, regardless of the paradigm).

Fig 5 provides a quick reference of those articles which have implementations
which are more applications oriented (e.g., the biologically inspired work of Mead
[58)).

Floating Gate Transistors (ie, analog floating gate transistors) have been
implemented as adaptive norivolatile weights. Floating gate transistors can vary
charge continuously, thereby the storage cell performs in an analog fashion [26]. The
dynamic range for storage devices constructed utilizing floating gate transistors is on
the order of 4-6 bits. Floating gate technology has been implemented by
[11,22,36,53,82] for mainly backprop and Hopfield type networks.

Charge-Coupled Devices (CCD) are structures that control the flow of charge
packets [76]. Therefore CCDs can be implemented to sum charge packages, as
opposed to generic CMOS processes which sum currents. Fig 6 is a schematic of the
structure of a charge-coupled device.

GATES

! ! DIELECTRIC
OHMIC
CONTACTS

P

N+ N+
P SILICON

Fig 6: Schematic of the structure of a CCD

This figure extracted from Sage and Withers (76].
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The operation of the CCD is described as follows: “diffusions at the beginning and end
serve as sources and sinks for charge packets, whose movement through the device is
controlled by voltages applied to a series of gates which are separated from the silicon
by a dielectric layer” [76]. The utilization of implementations based on CCD
technology have been for Backprop networks as demonstrated by Massengil! and
Mundie [54], Hopfield type networks as demonstrated by Sage and Withers [76], and
also for different types of networks, according to Agranat [1]. A CCD architecture has
also been shown to be well suited to implementing shared-weight networks (e.g.,
Neocognitron) by Chuang and Chiang [12)].

EEPROM (Electronically Erasable Programmable Read Only Memory) technology
is closely associated with floating gate transistor technology. EEPROMs offer
nonvolatile storage of the synaptic weights. With EEPROMSs, “the charge representing
the synaptic weight is stored on the capacitance of the electronically floating gate in
these devices” [10]. Some of the researchers currently investigating EEPROMSs for
implementing artificial neural networks includes [8,10,36,44,53,76,77]. The paradigm
most often implemented is the Hopfield network, however [36] has a neural network
chip currently an the market entitled ETANN (Electronically Trainable Analog Neural
Network) which is capable of implementing various paradigms. For more information
on ETANN, refer to the attached experimental brochure on Intel's ETANN.

Metal Nitride Oxide Silicon (MNOS) Technology was pioneered at Lincoln
Laboratories. The MNOS technique permits electronic programmability, similar to
EEPROM technology. MNOS devices store analog weights as charge in a nitride layer
between the gate and the channel of an FET, causing a modulation of the gate voltage
[67]. As described in [76] “in the conventional operation of MNOS devices using p-
type silicon, the silicon surface is held either in accumulation (negative gate voltages)
or in full inversion (positive gate voltages). Accumulation occurs naturally when a
negative gate voltage is applied; inversion is typically allowed to occur rapidly by
providing a nearby n+ diffusion as a virtually unlimited source of electrons”.

Examples of implementations using MNOS technology are [76,77], with the Hopfield
paradigm being the model which was constructed.

Pulse Stream Arithmetic: ~ As described in [68] , “in a pulse-stream implementation,
a neuron functions as a switched oscillator. The level of accumulated neural activity
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controls the oscillator’s firing rate”. In Murray [67,68,69], a fully analog synapse has
been developed which is fully programmable, and operates on individual pulses to
perform arithmetic. In Hochet, et al, [35] have implemented a Kohonen network
utilizing Frequency Coded Pulse Streams. In addition, Danielli, et al, [15] and Moon,
et al [63]have implemented a backpropagation network based upon Pulse
Frequency/Coding Modulation.

CONCLUSION

Analog VLS| implementations of artificial neural networks is currently being
investigated by a large number of researchers throughout the US, Europe, and Japan,
as is evidenced by the large numbers of technical papers which have been published
in a variety of conference proceedings, journals, and other technical publications.

This final technical report provides an overview of the Analog VLS/ technologies
which are currently being utilized/researched to implement artificial neural networks.
Tradeoffs between analog and digital computations were presented to provide a
perspective to the different approaches to computing. Shown were the relationships
between the advanced analog VLSI technologies and the paradigms implemented
(Fig 4), as well as the biologically inspired implementations as summarized in Fig 5.
Both Figs 4 & 5 provide a concise reference to those interested in hardware
implementations via analog VLSI circuits. Table 1 has been included to provide a very
briet description of the references cited in this report. Table 2 has been included to
provide a reference (which is by no means exhaustive) of different companies which
are involved in the design of artificial neural network chips.
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Company: Accotech

Chip Name:AK107

Description:Intel 8051 digital microprocessor
with on-chip ROM coded for NN
Availability: Now

Company: HNC

Chip Name:HNC-200X
Description: 2.5 billion conn/sec
Availability: DARPA contract

Company: Fujitsu Ltd.

Chip Name:MB4442

Description:one neuron chip, 70,000 conn/s
Availability: Now in Japan

Company: Intel Corp.

Chip Name:N64 (ETANN?)

Description:2.5 conn per 64x64x64 with
10,000 synapses

Availability: Now

Company: Hitachi Ltd.

Chip Name:None yet
Descriptioninformation encoded pulse trains
Availability: Experimental

Company: Micro Devices

Chip Name:MD1210

Description:fuzzy logic combined with
NN in fuzzy comparator chip

Availability: Now

Company: HNC

Chip Name: HNC-100X

Description: 100 million conn/sec
Availability: Army Battlefield Computer

Company: Motorola Inc.
Chip Name:None yet
Description: "whole brain" chip
Availability: late 1990 (?)

Table 2: Neural Network Chips

The information contained in this table was

originally from an article by
January/February

Colin Johnson in Al's
1990 issue.

Later revised by Bruce Shriver @ USL.
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